昆仑芯科技芯片研发总监漆维:昆仑芯AI芯片——

网络知识 2022-06-29 08:45www.1681989.comseo网站推广

在近日闭幕的2022北京智源大会上,昆仑芯科技芯片研发总监漆维受邀参与 “芯片前沿技术”专题论坛。

围绕当前学术领域迫切需要解决的问题,以及产业落地过程中存在的诸多挑战,漆维与来自中科院、清华大学、北京大学、杜克大学、伦敦帝国理工学院的各位专家学者一同分享重大成果与真知灼见,献上了一场诚意满满的芯片前沿技术盛宴。

推火网以下内容整理于主题报告 “昆仑芯AI芯片让计算更智能”直播实录

昆仑芯科技芯片研发总监漆维

大家好,我是来自昆仑芯科技的漆维。

相信很多朋友都认同,当下是芯片最好的时代。我个人也是非常幸运,很早就进入AI芯片这个赛道。接下来,结合我和团队这十年的积累讲一讲对这个领域的理解。

AI芯片的机遇空前繁荣的AI生态

今天整个AI芯片生态非常繁荣。从场景看,语音、视觉、自然语言处理这些不同的场景,AI算法都有持续突破。这些算法的突破不仅仅是对原有业务进行新的赋能,也极大便利了人们的日常生活。

一个维度,AI算法持续突破,工程师们尝试更大的模型把AI能力带到各行各业。国外GPT-3是首个千亿规模的模型,国内像百度的文心、智源的悟道在这块也有了很多积累和突破。

几年前看AI的时候,大家可能会觉得AI更多是对现有业务做赋能,是“AI+”。但其实最近几年,AI已经开始去赋能产业变革,像自动驾驶这个万亿级的市场,可以改变人们的出行方式。一个案例是Alphafold做蛋白质结构预测。能看到,AI算法很有机会对当前的科学难题进行突破。

上层整个AI生态非常繁荣,AI算法也不是第一次提出了,为什么最近这十年发展特别好?

其实是因为底层的AI计算提供了支持。,众所周知摩尔定律正在逐渐失效,传统的处理器结构已经不能满足支持。GPU得益于很早在HPC有布局,也对架构进行了迭代。除了NV的GPU,国外以谷歌为例,结合自己的场景和需求去自研了AI芯片。在国内,互联网纷纷下场造芯,也有很多AI的startup进入这个赛道。可以说,对AI芯片来说,这确实是一个历史性的新机遇。

理想非常好,上层整个生态及算法对底层都有硬件的依赖,自研AI芯片不仅能解决这种需求,也是利国利民的事情。但回到现实,就没有那么丰满了,这是一件很有挑战的事情。

AI芯片的挑战

AI芯片真的能做到在产业大规模落地是一件非常有挑战的事情。

,算法的多样化。前面提到,AI是有多种产品的,语音、视觉、自然语言处理,不同的业务场景有各自不同的算法模型以及底层计算精度的需求。除此之外,即便是同一个业务线,算法也在持续优化和突破。今天的算法需求或设计的芯片是不是能够满足明天的需求,这也是一个挑战。一个很有意思的例子,谷歌也在GPU的一篇论文中提到过,他们刚开始做芯片的时候跟业务团队沟通,业务告诉他们1%精度损失可接受。等芯片做完要推到业务做落地部署,发现业务改了说法,之前说的模型精度被推翻了。这也是对AI 芯片设计的一个挑战。

,行业巨头的生态壁垒。虽然大家都看好这个赛道、纷纷进入,但其实它不是一个蓝海。这个赛道是有一个行业巨头在前面。一方面,它确实做的比较早,到现在已经有十多年的积累,做成了一条非常强大的护城河。,它也敢于对自己的架构做持续的创新。随着AI算法的需求,它的GPU产品已经跟所有的主流框架做了适配。大家天然地去用GPU做AI算法的应用。面对新的硬件、定制的指令集和微架构,以及新建的整个软件生态,对于客户来说,为什么要选你?一定是有一个心理防线的。所以,一定要两个维度都做到,第一方面,要有一个非常可观的实际的性能收益去吸引业务。另一方面,需要整个软件栈做的非常灵活,用尽量小的迁移成本去打破客户的这种心理防线。

第三,『苛刻』的客户需求。客户的需求不是一成不变的,也是非常严苛的。以互联网为例,客户并不会关心一个单一的指标,他们关心延时、关心吞吐,也关心TCO,而且这些指标很多时候是融合在一起的。举个例子,客户关心的可能是在满足一定的延时条件下,单卡能够带来的吞吐是多少。甚至,有时候他还会加一些限制要求他的CPU、整个AI芯片或者GPU在一定程度的利用率去确保整个业务系统的鲁棒性。TCO也不是说单卡的性能和成本,而是说单卡跟服务器整机适配,在实际业务应用场景整机的分摊成本,甚至具体到分摊的网络成本、功耗成本等等。

,复杂的真实部署环境。从研发人员的角度,会觉得把芯片做出来、点亮,是非常关键的milestone,这一点肯定毋庸置疑。但其实从点亮到芯片在真实业务场景中实现规模落地,这中间还有非常大的工程挑战,这是软硬件、整个系统都会面临的挑战。硬件层面,做到万级、十万级甚至更高的时候,稳定性怎么样?成本对业务来说是不是可接受?软件也是,整个软件栈要适配不同的深度学习框架,包括国内外主流的各种操作系统甚至不同机型的适配等等。

这些都是实际的工程工作,克服这两块到了实际业务部署的时候,会发现并不是一个单线程的作业,有时候会做多线程的混部,甚至为了把整个运营资源利用率做高,会做两个不同的业务线混部。在这种场景下,AI卡的实际性能能不能做到很稳定,这些都是走向量产之后需要面临的工程化挑战。

AI芯片从定制到通用

伴随上述挑战,我们团队的发展其实也是分成了两个阶段。

第一阶段2011到2017年,跟着整个AI算法的迭代,AI逐渐在更多的业务线落地。跟这个阶段相匹配的,我们基于FPGA开发了AI的加速集群,做到了行业中一个非常大规模、有影响力的部署。16年17年的时候,随着Intel收购Altera,Amazon推出FPGA云服务,FPGA突然变得特别火;但因为我们在这个领域布局得很早,其实已经明显能感觉到FPGA从业务形态上、架构上的一些瓶颈。

在2017到2018年我们开始转型,2018年正式启动昆仑芯片的研发。目前,两代芯片都已经正式量产。

为什么做通用的AI处理器?尤其是像芯片这种高投入的场景,前面也提过,整个业务的算法其实都还在持续迭代和变化,如果要做一个AI芯片,尤其是真正能达到量产,一定是通用、能够灵活支持所有的应用和产品的,,需要软件栈去对接所有的业务系统。这就需要非常灵活的可编程的方案,一方面要能够适应业务需求,,商业化落地要能够尽量减少对应的软件成本以及对用户来说的迁移成本。

昆仑芯2代

以昆仑芯第二代芯片架构XPU-R为例做一个分享。该架构非常核心的两部分分别是Cluster和SDNN。

Cluster是通用计算单元,我们有自定义的指令集,支持标量和向量计算。某种程度上,其实软件可以像写扩展一样,或者说是像写处理器一样去编程。

Copyright © 2016-2025 www.1681989.com 推火网 版权所有 Power by