温度传感器的四种类型及原理

站长百科 2023-01-13 21:08www.1681989.com生活百科

温度传感器的四种类型及原理

温度传感器的四种类型及原理

温度传感器的四种类型及原理,传感器也慢慢的在发展与完善,它具有一定的转换能量的作用,在各行各业我们其实都能看到传感器的身影,那么下面为大家分享温度传感器的四种类型及原理。

温度传感器的四种类型及原理1

1、接触式温度传感器

接触式温度传感器的检测元件与被测对象之间可以良好的接触。它通过传导或者对流使之达到热平衡状态,从而使温度计的显示数值能直接表示被测对象的温度。

2、非接触式温度传感器

非接触式温度传感器的敏感元件与被测对象互不接触,这种传感器一般用于测量运动物体、小目标和热容量小或温度变化迅速的对象的表面温度,也可用于测量温度场的温度分布。

3、热电阻温度传感器

热电阻温度传感器是利用导体或者半导体的电阻值随其温度变化而变化的原理进行测温的一种传感器。对于不同导体(半导体)来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。

4、热电偶传感器

热电偶是由两种不同成份的导体接合而成的回路,当接合点的温度不,在回路中就会产生热电动势,这种现象叫做热电效应,这种电动势叫热电势。其中,直接用作测量介质温度的一端叫做测量端,另一端叫做补偿端;

补偿端与显示仪表连接,显示仪表会指出热电偶所产生的热电动势。不同材质制作出的热电偶使用于不同的温度范围,它们的灵敏度也不相同。制作热电偶的金属材料必须具有很好的延展性,所以热电偶测温元件具有极快的响应速度,可以测量温度快速变化的过程

温度传感器的四种类型及原理2

1、热电偶的工作原理

当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T,称为工作端或热端,另一端温度为 TO,称为 自由端(也称参考端)或冷端,则回路中就有电流产生,如图 2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞 贝克效应。

与塞贝克有关的效应有两个其一,当有电流流过两个不同导体的连 接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二, 当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于 温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质 及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生 的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集 中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处 a,b 之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图 2-1(b)所示。并规定在冷端,当电流由 A 流向 B 时,称 A 为正极,B 为负极。实验表明,当△V 很小时,△V 与△T 成正比关系。定义△V 对△T 的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。

目前,国际电工委员会(IEC)推荐了 8 种类型的热电偶作为标准化热电偶,即为 T 型、E 型、J 型、K 型、N 型、B 型、R 型和 S 型。

2、热电阻的工作原理

导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的`温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。

纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。②电阻率高,热容量小,反应速度快。③材料的复现性和工艺性好,价格低。④在测温范围内化学物理特性稳定。目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。

3、红外温度传感器

在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于 0、75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。

SMTIR9901/02 是荷兰 Smartec Company 生产的一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的, 通常热电堆是使用 BiSb 和 NiCr 作为热电偶。,

SMT9902sil 内部嵌入以 Ni1000 温度传感器和一小视角的硅滤片,使得测量温度更加的准确。因为红外辐射特性与温度相关,可以使用不同的滤镜来测量不同的温度范围。成熟的半导体工艺是产品小型化,低成本化。为了满足某些应用,红外传感器开口视角可以设计成小至 7°。

4、模拟温度传感器

常见的模拟温度传感器有 LM3911、LM335、LM45、AD22103 电压输出型、AD590 电流输出型。

AD590 是美国模拟器件公司的电流输出型温度传感器,供电电压范围为 3~30V, 输出电流 223μA(-50℃)~423μA(+150℃),灵敏度为 1μA/℃。当在电路中串接采样电阻 R 时,R 两端的电压可作为输出电压。

注意 R 的阻值不能取得太大, 以保证AD590 两端电压不低于 3V。AD590 输出电流信号传输距离可达到 1km 以上。作为一种高阻电流源,最高可达 20MΩ,所以它不必考虑选择开关或 CMOS 多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。

5、逻辑输出型温度传感器

设定一个温度范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。LM56、MAX6501-MAX6504、MAX6509/6510 是其典型代表。

LM56 是 NS 公司生产的高精度低压温度开关,内置 1、25V 参考电压输出端。最大只能带 50μA 的负载。电源电压从 2、7~10V,工作电流最大 230μA,内置传感器的灵敏度为 6、2mV/℃,传感器输出电压为 6、2mV/℃×T+395mV。

6、数字式温度传感器

它采用硅工艺生产的数字式温度传感器,其采用 PTAT 结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT 的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式DC=0、32+0、0047t,t 为摄氏度。

输出数字信号故与微处理器 MCU 兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于 0、005K。测量温度范围-45 到 130℃,故广泛被用于高精度场合。

温度传感器的四种类型及原理3

一、温度传感器有哪几种

温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。

(一)按测量方式可分为接触式和非接触式两大类。

1、接触式

接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差。

常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等,广泛应用于工业、农业、商业等部门。

2、非接触式

它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。

非接触测温优点测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

(二)按照传感器材料及电子元件特性分为热电阻和热电偶两类。

1、热电阻

热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。

温度变化会造成大的阻值改变,它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。

热敏电阻还有其自身的测量技巧。热敏电阻体积小是优点,它能很快稳定,不会造成热负载。不过也很不结实,大电流会造成自热。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。功率等于电流平方与电阻的积。要使用小的电流源。如果热敏电阻暴露在高热中,将导致永久性的损坏。

2、热电偶

热电偶是温度测量中最常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是最便宜的。电偶是最简单和最通用的温度传感器,但热电偶并不适合高精度的的测量和应用。

二、各种温度传感器工作原理

1、热电偶传感器工作原理

当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端或冷端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个,其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向)。称为珀尔帖效应。其二,当有电流流过存在温度梯度的导体时。导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应,两种不同导体或半导体的组合称为热电偶。

2、电阻传感器工作原理

导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性

(1)、电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

(2)、电阻率高,热容量小,反应速度快。

(3)、材料的复现性和工艺性好,价格低。

(4)、在测温范围内化学物理特性稳定。

目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。

3、红外温度传感器原理

在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0、75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。

热电阻温度传感器的种类有哪些啊?

热电阻

热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计,热电阻也可以与温度变送器连接,将温度转换为标准电流信号输出,实现对环境温度的实时监测。热电阻温度传感器分为金属热电阻和半导体热敏电阻两大类。

1.金属热电阻

金属热电阻传感器是利用金属导体的电阻值随温度变化而变化的原理进行测温的。金属热电阻大都由纯金属材料制成,目前主要采用的材料是铂和铜,也有用锰、铑、碳等材料制作热电阻。

(1)铂热电阻

铂热电阻的特点是测温精度高、稳定性好,是制造热电阻的好材料。铂热电阻元件的工作原理是在温度作用下,铂电阻丝的电阻值随之变化而变化的原理。可用于测量-200~800℃范围内的温度。其优点是电气性能稳定,温度和电阻关系近于线性精度高。

(2)铜热电阻

因为铂材料价格昂贵,一般工程测量中多采用铜作为热电阻材料。铜的最大优点是价格低廉,易于提纯,在-50-150℃的范围内,温度特性的线性较好。其缺点是铜的电阻率仅为铂的几分之一,,铜热电阻所用材料细而且长,机械强度较差,热惯性较大,在温度高于100℃以上或在侵蚀性介质中使用时,易氧化,稳定性较差。所以铜热电阻只能用于测量精度要求不高且温度不高(100℃以下)及无侵蚀性的介质中。

2.半导体热敏电阻

半导体热敏电阻简称热敏电阻,是一种新型的半导体测温元件,热敏电阻是利用某些金属氧化物或单晶锗、硅等材料,按特定工艺制成的感温元件。热敏电阻可分为3种类型,即正温度系数(PTC)热敏电阻、负温度系数(NTC)热敏电阻以及在某一特定温度下电阻值会发生突变的临界温度电阻器(CTR)。目前使用较多的热敏电阻是NTC型热敏电阻。热敏电阻与金属热电阻比有以下几点不同。

①热敏电阻的温度系数值远大于金属热电阻,所以半导体温度计的灵敏度很高。

②同温度情况下,热敏电阻阻值远大于金属热电阻。所以连接导线电阻对测量误差的影响极小,适用于远距离测量。

③热敏电阻温度曲线非线性相当严重,所以其测量温度范围远小于金属热电阻,-般在50-300℃。

④半导体热敏电阻的性能不够稳定、互换性差、精度较低,这是它的主要缺点。

热电阻温度传感器作为一种常用的温度传感器产品,凭借其性能稳定、使用灵活、可靠性高等优点,被广泛运用到工业生产中-200℃到+500℃范围的温度测量,少数情况下,低温可测量至1K(-272℃),高温可测量至1000℃,基本满足了工业生产的需要。

半导体温度传感器的工作原理

半导体温度传感器的工作原理

半导体温度传感器的工作原理,生活中我们很多的电子设备都是需要用到传感器的,传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,以下分享半导体温度传感器的工作原理。

半导体温度传感器的工作原理1

半导体温度传感器工作原理

1、热电偶温度传感器工作原理

两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。

2、红外温度传感器工作原理

在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。

SMTIR9901/02是一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量

高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。

3、模拟温度传感器工作原理

AD590是一款电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA~423μA,灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的'电压可作为输出电压。R的阻值不能取得太大,以保证AD590两端电压不低于3V。

AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。

4、数字式温度传感器工作原理

它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式DC=0.32+0.0047t,t为摄氏度。

输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。

半导体温度传感器的工作原理2

一、热电阻温度传感器

测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为Rt =AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

测温范围:金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。

二、集成温度传感器

集成温度传感器有可分为模拟式温度传感器和数字式温度传感器。

1.模拟式温度传感器

测温原理:将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等 优点。

测温范围LM135235335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。

该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。

封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。

2.数字式温度传感器

测温原理:将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的数字信号,使用方便,但响应速度较慢(100ms数量级)。

测温范围DS18B20是美国Dallas半导体公司生产的世界上第一片支持“一线总线” 接口的数字式温度传感器,供电电压范围为3~5.5V,测温范围为-55℃~+125℃

可编程的9~12位分辨率,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,出厂设置默认为12位,在12位分辨率时最多在750ms内把温度值转换为数字。

三、热电偶温度传感器

测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。

热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。

测温范围常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

半导体温度传感器的工作原理3

测温传感器有哪些

热敏电阻传感器是负温度系数热敏电阻的缩写。它是一种特殊类型的电阻器,其电阻会根据温度而变化。热敏电阻的输出由于其指数性质而呈非线性;但它可以根据其应用进行线性化。热敏电阻传感器有效操作范围为-50至250 °下进行玻璃封装热敏电阻或150 °下标准热敏电阻。

测温传感器有哪些

电阻温度探测器电阻温度检测器是测量非常精确的传感器之一。在电阻温度检测器中,电阻与温度成正比。该传感器由铂、镍和铜金属制成。它具有广泛的温度测量功能,可用于测量-270oC至+850oC范围内的温度。

RTD需要外部电流源才能正常工作。要使用RTD测量温度,必须将其连接在惠斯通电桥和恒流源中。测量电压输出以确定电阻。然后,可以通过给定RTD的线性电阻-温度关系推导出温度。

热电偶传感器是非常常见的接触型温度传感器。它们结构紧凑、价格低廉、使用简单,并能快速响应温度变化。

其由一个传感元件组成,该元件可以是玻璃或环氧树脂涂层,并且有2根电线,它们可以连接到电路。它们通过测量电流电阻的变化来测量温度。热敏电阻有NTC或PTC两种形式,通常成本较低。

半导体传感器半导体传感器是以IC形式出现的设备。通常,这些传感器被称为IC温度传感器。电流输出温度传感器、电阻器输出温度传感器、电阻器输出硅温传感器、二极管温度传感器、数字输出温度传感器。

目前的半导体温度传感器在大约55°C至+150°C的工作范围内提供高线性度和高精度。

红外传感器是一种电子仪器,红外传感器是一种非接触式温度传感器。它们是光敏设备,可检测来自周围区域或物体的红外(IR)辐射以测量热量。这些传感器分为热红外传感器和量子红外传感器两类。

文章主要介绍了测温传感器有哪些,浏览全文可以了解到有多种类型的温度传感器适用于测量温度的应用,并提供不同的功能或规格。例如,温度传感器可以提供模拟或数字输出。

温度传感器组成部分

温度传感器组成部分

温度传感器组成部分,生活中我们很多的电子设备都是需要用到传感器的,传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,以下分享温度传感器组成部分。

温度传感器组成部分1

温度传感器的结构测温元件、保护装置,传输装置;有的带固定方式,带接线盒,还有的将带仪表显示的也叫温度传感器。正常看到的是,电机用的温度传感器是个不锈钢保护管(里面是个铂热电阻测温元件)。

一个固定螺丝,然后是引线引到接线盒。其它的温度传感器,测温元件可能是很小,保护装置装好后体积也不大,但主要的结构基本上一样,测温元件+保护+引线。

无线温度传感器的组成部分

系统主要由无线温度传感器、测温通信终端(温度显示仪)、温度检测预警工作站三部分组成。

无线温度传感器由控制单元、无线数据传输和温度测量三部分组成。测温后,将温度数据通过无线方式传递给测温通讯终端。主要安装在易发热的电缆连接、变压器与开关的表面。

每个无线温度传感器具有唯一的ID编号,实际安装使用时记录每个传感器的安装地点,并与编号一起录入温度检测工作站计算机数据库中。传感器每隔一定时间(可以事先设定)自动发射一次监测点的温度数据,发现温度异常立即报警,可不受发送周期限制。

测温通信终端(温度显示仪):安装在集控室内,负责接收各无线温度传感器发送出的温度数据,在数据库中作长期保存,实时显示监测点。

测温工作站负责接收各温度显示仪上传的温度数据集中显示、分析处理。通过安装在PC机上的后台监测软件,以电子地图的形式显示各测温点的位置及温度变化,实时在线远程监测。

温度传感器组成部分2

具体来说,数字温度传感器的主要构成包括一个双电流源、一个Δ-ΣA/D转换器、数字逻辑和一个通向数字器件(如与一个微处理器或微控制器连接)的串行接口(如I2C总线、SMBus或SPI)。

数字温度传感器有两种本地或远程温度传感器,它们均采用某种方法强制两个成比例的电流通过一个连接成二极管形式的NPN或PNP晶体管,均用于测量所导致的VBE变化,使用Δ-ΣA/D转换器对电压采样并将数值转换成数字格式。

强制电流一般采用约101的比例。通过强制施加比例电流和测量两个VBE的差值,可消除二极管上IS这一与工艺相关参数的一阶效应。

每个温度传感器在生产过程中均会进行调整,以便与要使用的二极管的理想参数匹配。远程二极管的特性取自2N3904/6。由于本地温度传感器在硅衬底上只是一个简单的`NPN或PNP结构,远程温度传感器几乎总是集成一个本地温度传感器。

,远程传感器的作用几乎总是像两个传感器一样。本地温度传感器在同一封装集成了一个热二极管。对于本地传感器,根据封装和位于IC衬底上的本地二极管,热时间常数(即达到最终温度的63.2%所需的时间)为几分钟。总线负载过重或转换过快会造成器件自加热并影响温度精度。

温度数据变为可用所需的时间称为转换速率。该速率由器件内部振荡器和A/D分辨率决定,一般低于100Hz或长于10ms。转换速率越快,温度数据可检索的速度就越快,温度传感器消耗的功率也就越大。

由于存在自加热效应,转换速率通常较低。图1显示了一个远程温度传感器和/或本地 温度传感器 的简化框图。

温度传感器组成部分3

一、热电阻温度传感器

测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为Rt =AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

测温范围:金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。

二、集成温度传感器

集成温度传感器有可分为模拟式温度传感器和数字式温度传感器。

1.模拟式温度传感器

测温原理:将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等 优点。

测温范围LM135235335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。

该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。

封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。

2.数字式温度传感器

测温原理:将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的数字信号,使用方便,但响应速度较慢(100ms数量级)。

测温范围DS18B20是美国Dallas半导体公司生产的世界上第一片支持“一线总线” 接口的数字式温度传感器,供电电压范围为3~5.5V,测温范围为-55℃~+125℃

可编程的9~12位分辨率,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,出厂设置默认为12位,在12位分辨率时最多在750ms内把温度值转换为数字。

三、热电偶温度传感器

测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。

热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。

测温范围常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

PT100温度传感器的工作原理

铂热电阻(PT100温度传感器),是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。它的主要特点是测量精度高,性能稳定。

热电阻,是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。大都由纯金属材料制成,目前应用最多的是铂和铜。,现在已开始采用镍、锰和铑等材料制造热电阻。其中铂热电阻(PT100温度传感器)的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

各式各样的热电阻温度传感器

扩展知识一热电阻和热敏电阻的区别

热电阻和热敏电阻,都是基于导体的电阻值随温度的变化而变化这一特性来进行温度测量的。但由于早期的热电阻都是采用金属材料制作的,并且进行了工业规范,所以热电阻现在专指采用金属材料的热电阻;

热敏电阻是采用半导体材料的 温度-电阻 特性来进行温度测量的。品种及其特性繁多。一般将其归为半导体器件。

扩展知识二热电阻测温的部分特点

从热电阻的工作原理可知,这是一种输出为电阻阻值的传感器。要测量电阻值就必须在电阻两端连接导线,但通常金属导线和热电阻一样具有电阻值随温度的变化而变化的特性,而导线带来的阻值变化非但不反映被测量的温度,还会随着环境温度的变化而变化。

要解决这一问题,测量仪器必须随时感知导线的阻值,以消除其影响。而要想感知一段导线的阻值,必须从它的两头进行检测,这样就至少需要从测量仪器到热电阻之间再增加一根导线,用于感知导线的电阻,所以在要求稍高的场合,热电阻至少需要三根引线。

扩展知识三PT100 及 温标、分度、分度号

温标是为了保证温度量值的统一和准确而建立的一个用来衡量温度的标准尺度。

温度这个量比较特殊,它是利用一些物质的相平衡温度作为固定点刻在标尺上。固定点中间的温度值则利用某种函数关系来描述。通常把温度计、固定点和内插方程叫做温标的三要素(或称为三个基本条件)。对三要素的规范及其制定过程叫做分度,对分度的规范标准进行的编号叫做分度号

热电偶和热电阻及显示仪表的分度号是国际电工委员会(IEC)发表的相关技术标准(国际温标),我国于1988年采用该标准,该标准以表格的形式(简称分度表),规定每种 热电偶、热电阻 在-271度--2300度每一个温度点上,各种 热电偶、热电阻 的输出参数。并且给各种 热电偶、热电阻 命名统一代号,即分度号 。PT100 是铂热电阻的分度号。

1990年国际温标(ITS- 90)规定在 -89. 344 2℃~660. 323℃温区内的温度值由在一组规定的定义固定点分度的标准铂电阻温度计确定,定义固定点包括 铝凝固点、锌凝固点、锡凝固点、铟凝固点、镓熔点、汞三相点、氩三相点及水三相点装置,并使用规定的参考函数和偏差函数内插计算定义固定点之间的温度值。

↓国家标准 GB/T 30121-2013《工业铂热电阻及铂感温元件》中规定的参考函数

铂热电阻的分度号 PT100 ,其采用的字母和数字理论上不具有任何意义,但实际上 Pt 是元素 铂 的化学符号,100 是这种分度号的感温元件在0℃的电阻值。

温度传感器作用是什么

【太平洋汽车网】温度传感器作用主要有两个1、检测车外环境温度的高度,控制系统将根据车外温度与车内温度的差值来决定控制方式;2、给ECU提供车外的温度信号,ECU根据此信号与车内温度信号进行对比,确定车内的温度,以满足车内人员的需要。

什么是温度传感器?温度传感器的主要分类和用途介绍温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

温度传感器主要分类按测量方式可分为接触式温度传感器和非接触式温度传感器两大类,按照传感器材料及电子元件特性分为热电阻温度传感器和热电偶温度传感器两类。

1、接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

2、非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。

非接触测温优点测量上限不受感温元件耐温程度的限制,因而对ZUI高可测温度原则上没有限制。对于1800°C以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700°C以下直至常温都已采用,且分辨率很高。

温度传感器主要用途温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。

温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。

(图/文/摄太平洋汽车网问答叫兽)

热电阻温度传感器的工作原理是什么?怎么安装?

热电阻温度传感器主要是根据热电阻会随温度变化而变化的原理,将电阻值通过一定的换算公式,将温度计算出来。热电阻温度传感器一般根据热电阻的类型,而分为金属热电阻和半导体热敏电阻两类,它们适用的温度测量范围有所不同。下面推火网小编就来给大家详细介绍一下热电阻温度传感器吧!

二、热电阻温度传感器工作原理

热电阻温度传感器是由两种不同材质的导体或半导体组成的闭合回路,导体两端的温度存在差异时,就会产生一个电阻差,从而产生一定的电动势,这样闭合回路就会有电流的产生。温度与电动势之间会有一定的函数关系,之后通过这一函数关系,就可以计算式实际的温度。

三、热电阻温度传感器安装方法

1、为了保证热电阻温度传感器的感应处能够充分与待测介质有热交换,在安装前要进行准确的测量,并选择合适的安装点。

2、为了减少热电阻温度传感器的测量误差,并减少与介质热交换时产生的热量损失,要保证热电阻温度传感器的插入深度。

3、要根据热电阻温度传感器安装头的螺牙尺寸,来选择合适的螺牙座,螺牙座如果太小,会将热电阻温度传感器压断。

4、根据螺牙座的尺寸,在待测介质的管道上开一个相适应的小孔,孔不能太大,否则在日后的使用过程中会造成介质外泄。

5、将螺牙座插入管道上开的小孔中,并焊接好,要确保焊接牢靠、没有缝隙。

6、将热电阻温度传感器慢慢插入螺牙座,注意要慢慢旋进,而不能直接推进,这样会避免热电阻温度传感器的断裂。然后将热电阻温度传感器与仪表盘上的线连接好,要注意,接线盒不能够与待测介质的管道壁接触,否则会引起热电阻温度传感器的短路。

7、在安装的时候,应该充分考虑到之后维护和检修时的方便性,要选一个比较合理的位置进行安装。

热电阻温度传感器四线接法的原理是什么?

在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

扩展资料

热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,热电阻的引线对测量结果会有较大的影响。

国标热电阻的引线主要有三种方式

1、二线制在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,这种引线方式只适用于测量精度较低的场合

2、三线制在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。

3、四线制在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。

采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。

参考资料来源百度百科-热电阻温度传感器

Copyright © 2016-2025 www.1681989.com 推火网 版权所有 Power by